

Thrust Area Working Group # 6 – Space and Rockets

Steering Group Report

TAWG #6 – Space and Rockets

Team Composition

- Chair, Diane Kotelko, Magellan Aerospace
- Deputy Chair, Wendell Wiebe, MAHRC
- Igor Telichev, University of Manitoba
- Howard Loewen, Micropilot
- David Bertin, Red River College
- Sylvie Beland, NRC

Current State

Barriers

MANITOBA SAÉROSPACE
Goals

Exploration

Reliability

Space Mining

Space Mining

Orbital Debris

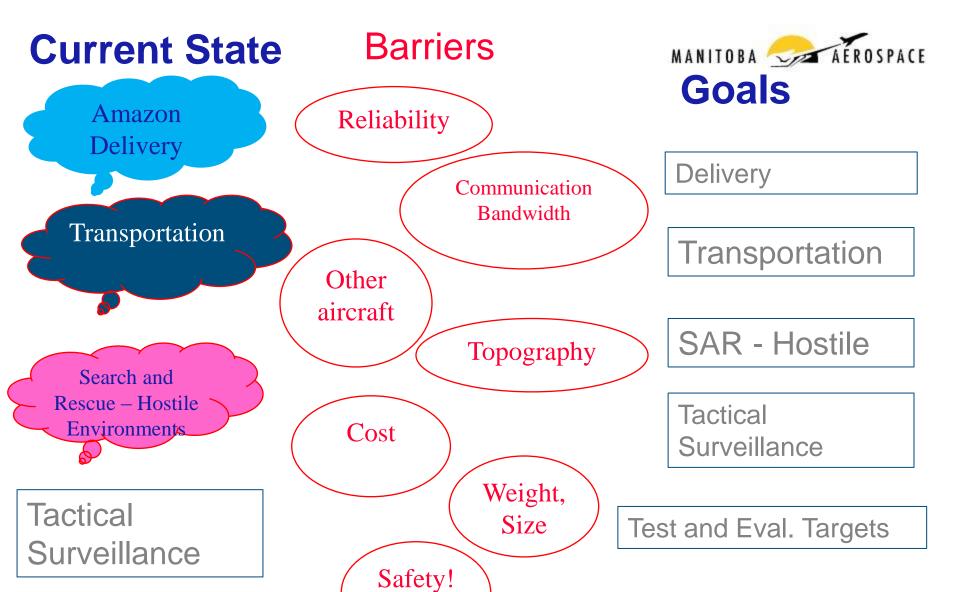
Earth
Observation

Communications

Space
Manufacturing

Radiation

Communication Bandwidth


Launch Cost Exploration

Earth
Observation

Weight, Size Space Manufacturing

Communications

Slide # 3 Page 3

Slide # 4 Page 4

Test and Eval. Targets

Two sides to Autonomy:

Directions to Hilton Winnipeg Airport Suites 1800 Wellington Ave, Winnipeg, MB R3H 1B2 9.1 km – about 14 mins

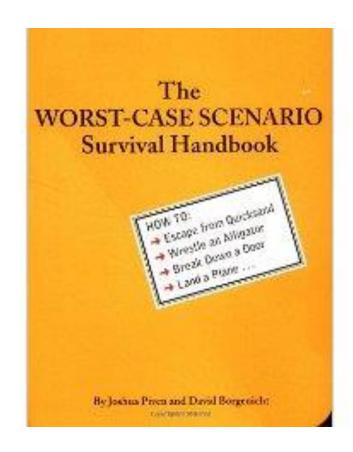
go 100 m

total 9.1 km

A	12 Byron Bay, Winnipeg, MB R3K 0R7				
	Head west on Byron Bay toward Kirkfield St				

Destination will be on the left

Hilton Winnipeg Airport Suites


1800 Wellington Ave, Winnipeg, MB R3H 1B2

	total 100 m
2. Turn right onto Kirkfield St	go 230 m total 350 m
3. Take the 1st right onto Mcbey Ave	go 120 m total 450 m
4. Take the 1st left onto Banting Dr	go 290 m total 750 m
5. Take the 1st right onto Portage Ave/Rte 85 W About 7 mins	go 5.1 km total 5.9 km
6. Turn left onto Ferry Rd About 3 mins	go 1.8 km total 7.7 km
7. Turn right onto Ellice Ave About 48 secs	go 550 m total 8.2 km
8. Take the 1st left onto Berry St About 1 min	go 800 m total 9.0 km
Turn right onto Wellington Ave	ao 76 m

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Map data ©2014 Google

Directions weren't right? Please find your route on maps.google.ca and click "Report a problem" at the bottom left

Enabling Technologies

- Autonomy

		Satellites & Rockets	UAVs
Planned Mission - Reduced operator costs - Reduced on- board costs - Reduced processor load	Target Selection	Unpredicted opportunities - Solar storms - "Garbage" collection - Conflicting priorities	- Search / surveillance missions
	Assessment of Current State	Changing validity/accuracy of sensorsAlternative sensors	Changing validity/ accuracy of sensorsAlternative Sensors
	Prediction of Future State	- Position, attitude, propellant load	- Position, attitude, fuel,

Enabling Technologies

– Autonomy (cont'd)

		Satellites & Rockets	UAVs
Unplanned Events - Minimized outages = maximum value - Mission success - Mission safety	Failure Detection - on-board sensors - environment	Component failure -On-orbit debris (BEFORE impact)	Component failureUnexpected obstacles (BEFORE impact)
	Failure Isolation – Minimize risk to mission	no opportunity to repair	- safety!
	Failure Recovery	Reconfigure to continueDefensive manoeuvres	Reconfigure to continueDefensive manoeuvres

Critical Enabling Technology – Autonomy

Description

- Perform nominal mission with less operator interaction
 - On-board algorithms to combine lower cost sensors to provide equivalent accuracy to higher cost sensors
 - •On-board algorithms to maximize output of systems where independent subsystems are competing for limited resources
- Respond to off-nominal conditions with less operator interaction
 - •Adaptive control systems to recognize changes to the sensors, actuators, environment and physical plant under control.
 - •Failure detection, isolation and recovery algorithms that are adaptive.

Critical Enabling Technology – Autonomy

Timeline for Technologies

- Ongoing for UAV, agile marketplace.
- Next major Canadian spacecraft mission has already started early phase development.

Concept and Cost to Implement

- "Autonomy Innovation Centre" a series of cross-company, cross-industry (including academia), collaborative R&D projects aimed at increasing TRL levels from 3 to 6 or higher.
- Simulators of varying fidelity up to, and including, UAV flights and spacecraft hardware-in-the-loop.
- Up to \$10M over 5 years with

Critical Enabling Technology – Autonomy

Manitoba's Role

• Collaboration/partners including: U of M, Micropilot, Magellan

Risks if not implemented in Manitoba

- Challenging competitive environment;
 - Satellites have limited market
 - UAV autopilots have more competition
- Risk of losing relevance when always focussed on final implementations